不论是范文还是散文诗歌百科知识,总有一篇文章是您需要的!
当前位置: 好文学 学习方法 初中学习内容页

初三数学上册知识点内容

2022-12-10 15:23:40 原创 初中学习 手机版

  许多同学都想要了解初三年级数学的知识点,那么初三数学上册的知识点有哪些呢?下面小编为大家带来初三数学上册知识点内容,欢迎大家参考阅读,希望能够帮助到大家!

  

  初三数学上册知识点内容

  反比例函数

  1.形如y=k/x(k≠0)或y=kx^-1的函数叫做反比例函数,k叫做反比例系数。它的图像是双曲线。^-1表示负一次。

  2.在函数y=k/x(k≠0),当k>0时,表达式中的想x、y符号相同,点(x,y)在第一、三象限,所以函数y=k/x(k≠0)的图像位于第一、三象限;当k<0时,表达式中的想x、y符号相反,点(x,y)在第二、四象限,所以函数y=k/x(k≠0)的图像位于第二、四象限。

  3.在y=k/x(k≠0)中,当k>0时,在第一象限内,y随着x的增大而减小;若y的值随着x的值的增大而增大,则k的取值范围是k<0。

  4.设P(a,b)是反比例函数y=k/x(k≠0)上任意一点,则ab的值等于k。经过反比例函数上的任意一点P,分别向x轴、y轴作垂线段,则所成的矩形面积为k;过P点向x轴或y轴作垂线段,连接OP,则所成的三角形面积为k/2。

  二次函数

  1.形如y=ax^2+bx+c(a≠0,a、b、c为常数)。的函数叫做二次函数,它的图像是一条抛物线。

  2.二次函数y=ax^2+bx+c(a≠0)的顶点坐标为(-b/2a,4ac-b^2/4a),对称轴是直线x=-b/2a。

  3.对于二次函数y=ax^2+bx+c(a≠0),当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。图像与y轴的交点的坐标是(0,c)。

  4.一元一次方程ax^2+bx+c=0(a≠0)的解,可以看成函数y=ax^2+bx+c(a≠0)的图像与x轴交点的横坐标。

  当b^2-4ac>0时,函数图像与x轴有两个交点。

  当b^2-4ac=0时,函数图像与x轴有一个交点。

  当b^2-4ac<0时,函数图像与x轴没有交点。

  5.当a>0,且x=-b/2a时,函数y=ax^2+bx+c(a≠0)取得最小值,这个值等于4ac-b^2/4a;当a<0,且x=-b/2a时,函数y=ax^2+bx+c(a≠0)取得值,这个值等于4ac-b^2/4a。

  6.抛物线y=ax^2+c(a≠0)的对称轴是y轴。

  7.对于二次函数y=ax^2+bx+c(a≠0),若a,b同号,对称轴在y轴右侧a,b异号,对称轴在y轴左侧。

  8.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大。若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小。

  9.对于抛物线y=a(x-m)^2+k,左右平移时,只与m有关,往左是加,往右是减;上下平移时,只与k有关,往上是加,往下是减。

  相似三角形

  1.如果两个数的比值与另两个数的比值相等,就说这四个数成比例。

  2.如果a/b=c/d,那么ad=bc;如果ad=bc,且bd≠0,那么a/b=c/d;如果a/b=c/d,那么(a+b)/b=(c+d)/d。谁都不能为0。为0无意义。

  3.一般的,如果三个数a,b,c满足比例式a:b=b:c,则b就叫做a,c的比例中项。(如果是线段的话,只能取正的,如果是数,正负都可以)。

  4.黄金分割

  把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是(√5-1)/2,取其前三位数字的近似值是0.618。

  5.证明三角形相似的方法:

  (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;

  (2)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;

  (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;

  (4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似;

  (5)对应角相等,对应边成比例的两个三角形叫做相似。

  一元二次方程

  1. 一元二次方程的一般形式: a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c; 其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。

  2. 一元二次方程的解法:一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。

  3. 一元二次方程根的判别式: 当ax2+bx+c=0 (a≠0)时,Δ=b2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:

  Δ>0 <=> 有两个不等的实根; Δ=0 <=> 有两个相等的实根;Δ<0 <=> 无实根;

  4.平均增长率问题--------应用题的类型题之一 (设增长率为x):

  (1) 第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2。

  (2)常利用以下相等关系列方程: 第三年=第三年 或 第一年+第二年+第三年=总和。

  初三数学上学期知识点

  1、矩形的概念

  有一个角是直角的平行四边形叫做矩形。

  2、矩形的性质

  (1)具有平行四边形的一切性质

  (2)矩形的四个角都是直角

  (3)矩形的对角线相等

  (4)矩形是轴对称图形

  3、矩形的判定

  (1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形

  (3)定理2:对角线相等的平行四边形是矩形

  4、矩形的面积:S矩形=长×宽=ab

  初三数学上学期知识点归纳

  1、正方形的概念

  有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

  2、正方形的性质

  (1)具有平行四边形、矩形、菱形的一切性质;

  (2)正方形的四个角都是直角,四条边都相等;

  (3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;

  (4)正方形是轴对称图形,有4条对称轴;

  (5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;

  (6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

  3、正方形的判定

  (1)判定一个四边形是正方形的主要依据是定义,途径有两种:

  先证它是矩形,再证有一组邻边相等。

  先证它是菱形,再证有一个角是直角。

  (2)判定一个四边形为正方形的一般顺序如下:

  先证明它是平行四边形;

  再证明它是菱形(或矩形);

  最后证明它是矩形(或菱形)。

《初三数学上册知识点内容.doc》

将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
文档为doc格式